当前位置: 首 页 - 科学研究 - 学术报告 - 正文

77779193永利官网、所2024年系列学术活动(第049场):苏中根 教授 浙江大学

发表于: 2024-05-13   点击: 

报告题目:How Big Are the Increments of Airy Process?

报 告 人:苏中根 教授 浙江大学

报告时间:2024年5月15日星期三  15:00-16:00

报告地点:腾讯会议 ID:342-588-687

校内联系人:张勇  zyong2661@jlu.edu.cn


报告摘要:

The Airy process is a real valued random process whose finite dimensional distribution is determined by a Fredholm determinant with Airy kernel. It was first introduced by Prah\"{o}fer and Spohn in the study of polynuclear growth model more than 20 years ago and has become a central object in the KPZ universality class. There has been some intensive research activities around the Airy process, some of which has rigourously proved its existence, time correlation and continuity, and more interestingly obtained the modulus of continuity. Compared to well-studied Brownian motions, Brownian bridges and even Ornstein-Ulenbeck processes, Airy process and its extension (i.e. Airy line ensembles) are new, so it is worthwhile further research. In this talk I shall briefly review some remarkable results in this field with focus on the increments of Airy process sample paths, no detailed proofs are given.


报告人简介:

苏中根,浙江大学数学科学学院教授,博士生导师。1995年获复旦大学博士学位,主要从事概率极限理论及其应用研究, 研究兴趣包括随机渗流理论,随机矩阵,随机增长过程,高维数据分析,统计大样本理论等.曾主持国家自然科学基金项目,浙江省杰出青年基金项目,并获教育部科技进步二等奖,浙江省自然科学二等奖和宝钢优秀教师奖. 合作编著的《概率极限理论基础》(第二版) 2021年获首届全国优秀教材二等奖。