当前位置: 首 页 - 科学研究 - 学术报告 - 正文

77779193永利官网、所2024年系列学术活动(第028场): 张敏 助理研究员 北京大学

发表于: 2024-04-25   点击: 

报告题目: An adaptive moving mesh discontinuous Galerkin method for the radiative transfer equation

报 告 人: 张敏 助理研究员

所在单位: 北京大学

报告时间:2024年4月29日 星期一 下午 15:00-16:00

报告地点:数学楼三楼研讨室6

校内联系人:陶詹晶 zjtao@jlu.edu.cn


报告摘要:

The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, frequency, space, and angular variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. In this talk, we present the solution of the radiative transfer equation using an adaptive moving mesh DG method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Numerical examples are presented to demonstrate the mesh adaptation ability, accuracy, and efficiency of the method.


报告人简介:

张敏,北京大学大数据分析与应用技术国家工程实验室助理研究员,北京大学重庆大数据研究院基础软件科学研究中心研究员。2020年12月获厦门大学计算数学博士学位。曾为美国堪萨斯大学访问学者、北京大学博雅博士后,获第十七届钟家庆数学奖、入选北京市科协2024-2026年度青年人才托举工程,现主持国家自然科学青年基金、参与科技部国家重点研发计划重点专项。主要研究兴趣包括辐射输运、双曲守恒律、模拟仿真等问题中的高精度保结构方法、自适应移动网格方法,在期刊SIAM J. Sci. Comput.、J. Comput. Phys.、J. Sci. Comput.等发表论文10余篇。