当前位置: 首 页 - 科学研究 - 学术报告 - 正文

77779193永利官网、所2023年系列学术活动(第119场):黎野平 教授 南通大学

发表于: 2023-10-13   点击: 

报告题目: Large-time behavior of the solutions for the 1D compressible NSK equations with large initial data

报 告 人:黎野平 教授 南通大学

报告时间:2023年10月17日 14:00-15:00

报告地点:数学楼第一楼报告厅

校内联系人:郭斌 bguo@jlu.edu.cn


报告摘要: In this talk, I am going to present the time-asymptotic behavior of strong solutions to the initial-boundary value problem of the compressible fluid models of Korteweg type with density-dependent viscosity and capillarity on the half-line R^+. The case when the pressure p(v)=v^{-\gamma}, the viscosity $\mu(v)=\tilde{\mu} v^{-\alpha}$ and the capillarity \kappa(v)=\tilde{\kappa} v^{-\beta} for the specific volume $v(t,x)>0$ is considered, where $\alpha,\beta, \gamma\in\mathbb{R}$ are parameters, and $\tilde{\mu},\tilde{\kappa}$ are given positive constants. I focus on the impermeable wall problem where the velocity $u(t,x)$ on the boundary $x=0$ is zero. If $\alpha,\beta$ and $\gamma$ satisfy some conditions and the initial data have the constant states (v_+, u_+) at infinity with $v_+, u_+>0$, and have no vacuum and mass concentrations, we prove that the one-dimensional compressible Navier-Stokes-Korteweg system admits a unique global strong solution without vacuum, which tends to the 2-rarefction wave as time goes to infinity. Here both the initial perturbation and the strength of the rarefaction wave can be arbitrarily large. As a special case of the parameters $\alpha,\beta$ and the constants $\tilde{\mu},\tilde{\kappa}$, the large-time behavior of large solutions to the compressible quantum Navier-Stokes system is also obtained for the first time. Our analysis is based on a new approach to deduce the uniform-in-time positive lower and upper bounds on the specific volume and a subtle large-time stability analysis.This is a joint work with Prof. Chen Zhengzheng.


报告人简介: 黎野平,南通大学理学院教授、博士研究生导师、湖北“楚天学者”特聘教授。先后在武汉大学和香港中文大学获理学硕士学位和博士学位。主要致力于非线性偏微分方程的研究,尤其是来自物理、材料、生物和医学等自然科学中的各类非线性偏微分方程和非线性耦合方程组。在《Mathematical Models and Methods in Applied Sciences》,《SIAM Journal of Mathematical Analysis》,《Journal of Differential Equations》和《Communications in Mathematical Sciences》等国际、国内的重要学术期刊杂志上发表论文90余篇,其中SCI70余篇。同时,主持完成国家自然科学基金3项和教育部博士点博导专项、上海市教委创新项目以及江苏省自然科学基金等各类科研项目10余项;现在正主持国家自然科学基金面上项目1项和参加国家自然科学基金重点项目1项和面上项目2项。