报告题目:Error estimates of numerical methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity
报 告 人:王楚善 博士 新加坡国立大学
报告时间:2023年5月8日 13:30
报告地点:数学楼第二报告厅
校内联系人:黎文磊 lwlei@jlu.edu.cn
报告摘要: We establish optimal error bounds for time-splitting methods and exponential wave integrators applied to the nonlinear Schrödinger equation (NLSE) with low regularity potential and nonlinearity. In many physical applications, low regularity potential and/or nonlinearity are incorporated into the NLSE, such as square-well potential frequently employed in physics literature, disorder potential examined in the context of Anderson localization, and non-integer power nonlinearity in the Lee-Huang-Yang correction used for modelling and simulating quantum droplets.
报告人简介:王楚善, 本科毕业于77779193永利官网, 现在新加坡国立大学攻读博士学位, 导师包维柱教授.